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SUMMARY

High-order doubly asymptotic open boundaries are developed for transient analyses of scalar waves
propagating in a semi-infinite layer with a constant depth and a circular cavity in a full-plane. The open
boundaries are derived in the frequency domain as doubly asymptotic continued fraction solutions of the
dynamic stiffness of the unbounded domains. Each term of the continued fraction is a linear function
of the excitation frequency. The constants of the continued fraction solutions are determined recursively.
The continued fraction solution is expressed in the time domain as ordinary differential equations, which
can be solved by standard time-stepping schemes. No parameters other than the orders of the low-
and high-frequency expansions need to be selected by users. Numerical experiments demonstrate that
evanescent waves and long-time (low-frequency) responses are simulated accurately. In comparison with
singly asymptotic open boundaries, significant gain in accuracy is achieved at no additional computational
cost. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When wave propagation problems are modeled, it is often necessary to introduce an artificial
boundary around the region of interest so that the size of computational domain is limited to
allow the application of well-established numerical methods such as the finite element method.
The region exterior to the artificial boundary is regarded as an unbounded domain. A boundary
condition mimicking the unbounded domain has to be enforced on the artificial boundary to prevent
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fictitious reflections that pollute the solution. A direct time-domain formulation of the boundary
condition is required when non-linearities occur in the region of interest. Such a boundary condition
is known by various names such as absorbing, non-reflecting, open, radiation, transmitting and
transparent boundary conditions. In this paper, only the term ‘open boundary’ is employed to refer
to the artificial boundary with a boundary condition mimicking the unbounded domain. Extensive
literature on various open boundaries exists. Excellent literature reviews are available in papers
[1–6] and books [7–10].

In theory, an exact open boundary is global in space and time, i.e. the present response at a
point on the boundary is a function of the response history at all boundary points up to the present
time. When a rigorous method (for example, the boundary element method [11, 12], the thin-layer
method [13] or the scaled boundary finite element method [10, 14]) is employed to construct an
open boundary, the formulation is global. The convolution integral and storage of the response
history are computationally expensive for large-scale problems and long-time calculations.

Time realization techniques have been proposed to construct temporally local open bound-
aries from the dynamic stiffness matrices obtained at discrete frequencies from analytical solution
or by a rigorous method. In References [15–17], a Padé approximation of the dynamic stiff-
ness matrix is constructed by using a curve fitting technique based on the least-squares method.
A temporally local open boundary is formulated after expressing the Padé approximation as unit
fractions. In Reference [18], the Padé approximation is expressed as a continued fraction leading
to a mixed-variable method. In Reference [19], system theory is applied to construct a temporally
local open boundary from the unit-impulse response obtained from the scaled boundary finite
element method.

Moreover, a large number of approximate open boundary conditions have been developed. Well-
known examples include the viscous boundary [20], the superposition boundary [21], the paraxial
boundary [22] and the extrapolation boundary [23]. Generally speaking, they are spatially and
temporally local, i.e. the response at a point is coupled with the response at a few adjacent points
during a few previous time steps only. These local open boundaries are simple and computationally
efficient by themselves, but have to be applied to an artificial boundary sufficiently away from
the region of interest in order to obtain results of acceptable accuracy. This increases the total
computational effort.

To increase the accuracy and efficiency of simple open boundaries, high-order local open
boundaries have been proposed. This type of open boundary has the potential of leading to accurate
results as the order of approximation increases. At the same time, it is computationally efficient
owing to its local formulation. Examples of early developments include the paraxial boundary [22],
the Bayliss, Gunzburger and Turkel (BGT) boundary [24] and the multi-direction boundary [25].
However, the order of derivative in these formulations increases with the order of the open boundary.
Beyond the second order, the implementation in a finite element computer program becomes
complex and instability may occur [8].

Researchers in several fields have shown their strong interest in developing open boundaries of
arbitrarily high order (see, e.g. [26–32]). Literature reviews are available, e.g. in References [4, 6].
Most of the open boundaries are, however, limited to straight, circular and spherical boundaries.
Special corner conditions have to be devised for rectangular boundaries. Krenk [30] showed that
several of well-established open boundaries can be formulated as a rational function approximation
(Padé or continued fraction expansion) of the plane wave representation for scalar waves.

All the above high-order open boundaries were constructed to absorb propagating waves radiating
energy. As they are singly asymptotic at the high-frequency limit, these high-order open boundaries
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are appropriate for radiative fields, i.e. virtually all of the field energy is propagating out to
infinity [33]. In some classes of applications, a part of the total energy may be trapped near
the region of interest and may not propagate to infinity. The best-known example is probably
the evanescent waves occurring in a semi-infinite layer with a constant depth (also known as a
waveguide). It is explained in Reference [34] that inclusion of evanescent modes improves the
accuracy of the long-time behavior of a high-order open boundary. Another example is the class
of problems where the dimensionless frequency a0=�r0/c (� is the smallest excitation frequency
of interest, r0 is a characteristic length of the region of interest, c is the wave velocity) is very low
(statics can be regarded as the limiting case a0→0). These wave fields are largely non-radiative.
To achieve reasonably accurate results at low frequencies, i.e. over long time, the order of an
open boundary has to be very high, thereby leading to large computational cost. In most of the
publications on high-order open boundaries, the numerical results are shown for only the first few
periods, and long-time responses are rarely reported.

From an application point of view, it is highly desirable to develop a temporally local open
boundary that is capable of accurately mimicking an unbounded domain over the entire frequency
range (i.e. from zero to infinity). One advance toward this objective is the introduction of the
doubly asymptotic boundaries [33, 35–38]. This formulation is spatially global as the dynamic
stiffness is exact not only at the high-frequency limit but also at statics. To the knowledge of the
authors, the highest order reported is three [39].

Recently, a new approach to construct temporally local open boundaries of arbitrarily high order
has been proposed in Reference [40]. It is applicable to both scalar and vector waves. The geometry
of the boundary of the unbounded domain can be arbitrary as long as the scaling requirement (there
exists a zone from where the whole boundary is visible) is satisfied. Anisotropic unbounded media
are handled without additional computation cost. Different from most of existing approaches, it
seeks a continued fraction solution for the equation of the dynamic stiffness matrix of an unbounded
domain obtained in the scaled boundary finite element method [14]. Each term of the continued
fraction is a linear function of the excitation frequency �. The constant matrices in the continued
fraction are determined recursively by satisfying the scaled boundary finite element equation at the
high-frequency limit. No explicit solution of the dynamic stiffness matrix at discrete frequencies
is required. By using the continued fraction solution, the force–displacement relationship of the
unbounded domain is formulated as a temporally local open boundary condition in the time domain.
However, like other high-order open boundaries, this open boundary is inappropriate to model
evanescent waves, and the convergence rate at low frequencies is much slower than that at high
frequencies.

In this paper, a technique for constructing a high-order doubly asymptotic open boundary is
proposed by extending the work in Reference [40]. Only scalar waves and unbounded domains
with simple geometry, namely a semi-infinite layer with a constant depth (a waveguide) and a
circular cavity in a full-plane, are considered. Nevertheless, the open boundaries for these cases
can be applied directly to solve practical problems by introducing straight or circular artificial
boundaries [17, 26, 27, 29, 34]. The investigations into the simple cases also provide insights into
the basic numerical phenomena involved in high-order open boundaries such as the failure in
representing evanescent waves and the relative poor performance at low frequencies. Furthermore,
a novel approach to develop accuracy and efficient open boundaries is proposed. Further research
on modeling problems with more complicated geometry and vector waves is in progress.

This paper is organized as follows. In Section 2, the scalar wave equation is decomposed into
a series of one-dimensional wave equations by applying the method of separation of variables.
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After the dynamic stiffness coefficient of a one-dimensional wave problem is introduced, an
equation of the dynamic stiffness coefficient is derived. In Section 3, a doubly asymptotic continued
fraction solution for the dynamic stiffness coefficient is determined recursively at the high- and
low-frequency limits. The link between the singly asymptotic high-frequency solution for the
semi-infinite layer and several other high-order open boundaries based on Padé (or continued
fraction) expansions is identified. In Section 4, an equation of motion of an unbounded domain is
formulated on the boundary by using the doubly asymptotic continued fraction solution of dynamic
stiffness. It leads to a temporally local open boundary expressed in time-independent static stiffness
and damping matrices. Well-established time-stepping schemes in structural dynamics are directly
applicable. In Section 5, the high performance of the proposed high-order doubly asymptotic open
boundaries is demonstrated with numerical examples. In Section 6, conclusions are presented.

2. DYNAMIC STIFFNESS OF UNBOUNDED DOMAINS

The linear homogeneous scalar wave equation is expressed as

∇2u= 1

c2
ü (1)

where u=u(x, y, z, t) denotes the wave field, ∇2 the Laplace operator and c the given wave speed.
In this paper, the arguments of functions are omitted for simplicity in the nomenclature. The initial
conditions for an unbounded domain initially at rest are expressed as

u= u̇=0 at t=0 (2)

The geometries and boundary conditions of the semi-infinite layer and the circular cavity are
given in Sections 2.1 and 2.2, respectively. By employing the method of separation of variables,
Equation (1) can be transformed to a series of one-dimensional wave equations. From a one-
dimensional wave equation and the definition of a dynamic stiffness coefficient, an equation of the
dynamic stiffness coefficient is then derived.

2.1. Semi-infinite layer with constant depth

A semi-infinite layer with a constant depth h is shown in Figure 1. For convenience, the x-axis
of the coordinate system is chosen at the lower boundary of the layer. The formulation of the
proposed open boundaries is based on the dynamic stiffness representing the property of the semi-
infinite layer. It is independent of the coordinate system. The open boundaries are applicable to
semi-infinite layers of any orientation. It is assumed that a distributed traction �0(t) is applied to
the vertical boundary �V (at x= x0). The homogeneous boundary conditions prescribed on the

h

ΓL

ΓU

ΓV

x

y

+∞

Figure 1. Semi-infinite layer with constant depth.
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parallel upper boundary �U and lower boundary �L are satisfied in the method of separation of
variables by eigenfunctions. For example, when the upper boundary �U is free (i.e. u,y (y=h)=0)
and the lower boundary �L is fixed (i.e. u(y=0)=0) the eigenfunctions are sin(�i y/h) where the
eigenvalues are equal to �i =(2i+1)�/2 for i=0,1, . . . . Note that as the eigenvalue �i increases,
the eigenfunction varies more rapidly along the vertical boundary.

For a mode with a modal eigenvalue �, the one-dimensional wave equation is expressed as

�2ũ
�x2

−
(

�

h

)2

ũ= 1

c2
¨̃u (3)

where ũ= ũ(x, t) is the modal displacement. The modal traction is denoted as �̃0(t) at x= x0. Once
the solution of Equation (3) satisfying both the boundary condition at x= x0 and the radiation
condition at x→+∞ is known, the solution for the wave propagation in the semi-infinite layer
can be obtained by modal superposition. Hereafter, only the modal equation in Equation (3) is
addressed, and the word ‘modal’ is omitted for the sake of simplicity except where confusion may
arise.

By assuming the time-harmonic behavior ũ=Ũ (�, x)e+i�t and �̃0(t)= R̃(�, x)e+i�t (� is the
excitation frequency), Equation (3) is rewritten in the frequency domain as

d2Ũ

dx2
+ 1

h2
(a20−�2)Ũ =0 (4)

where Ũ =Ũ (�, x) is the displacement amplitude and a0 is a dimensionless frequency

a0= �h

c
(5)

2.1.1. Analytical solution. The solution of Equation (4) satisfying the radiation condition for the
semi-infinite layer extending to x→+∞ (Figure 1) is

Ũ =Ce−
√

�2−a20 x/h (6)

with the integration constant C . A cut-off frequency exists in Equation (6) at the dimensionless
frequency a0=�. Below the cut-off frequency, i.e. a0<�, the displacement decays exponentially.
No propagating waves exist, in other words, evanescent waves are present. Above the cut-off
frequency, i.e. a0>�, Equation (6) describes a wave propagating with a frequency-dependent phase
velocity.

For the semi-infinite layer extending to the right-hand side, the force amplitude R̃= R̃(�, x) on
a vertical boundary at arbitrary x is expressed as

R̃=−h
dŨ

dx
(7)

Substituting Equation (6) into Equation (7) results in

R̃=−h
dŨ

dx
=C

√
�2−a20e

−
√

�2−a20 x/h (8)
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The open boundary condition is represented as a force–displacement relationship. In the frequency
domain, this relationship is defined by the dynamic stiffness coefficient S= S(�, x) at a vertical
line with a constant x-coordinate

R̃= SŨ (9)

It is analogous to the DtN operator [41]. The solution for the dynamic stiffness coefficient can be
obtained from its definition in Equation (9) with the substitution of Equations (6) and (8)

S(a0)=
√

�2−a20 (10)

Note that the dynamic stiffness coefficient S(a0) is only a function of the dimensionless frequency
a0 and is independent of the value of the x coordinate (Equation (5)). Below the cut-off frequency,
i.e. a0<�, S(a0) is a real number whereas the imaginary part representing radiation damping
vanishes. At the cut-off frequency a0=�, S(a0) is equal to zero representing the resonance of the
semi-infinite layer. Above the cut-off frequency, i.e. a0>�, S(a0) is pure imaginary. Equation (10)
normalized by the modal eigenvalue � is the square-root operator widely used in constructing open
boundaries

S(a0)

�
=
√
1−

(a0
�

)2
(11)

To obtain a reference solution to validate numerical results in the time domain, the response to
a unit impulse of traction �̃0I(t)=�(t) (�(t) represents the Dirac-delta function) applied at x= x0
is evaluated. The amplitude of the displacement response ŨI is determined from Equations (10)
and (9) with the Fourier transform of the unit impulse R̃0I=1

ŨI= 1√
�2−a20

(12)

The unit-impulse response ũI(t) is equal to the inverse Fourier transform of ŨI (Equation (12))

ũI(t)= c

h
J0

(
�
ct

h

)
H(t) (13)

where J0 is the zero order first kind Bessel function, H(t) is the Heaviside-step function
(H(t<0)=0, H(t�0)=1), and t̄=ct/h represents the dimensionless time. At large time (t̄�1),
the asymptotic solution of the unit-impulse response is expressed as

ũI(t)→
√

2h

��ct
cos

(
�
ct

h
− �

4

)
(14)

It oscillates at a period of T =2�h/(�c). This period corresponds to the dimensionless cut-
off frequency a0=� where the dynamic stiffness coefficient is equal to zero. The unit-impulse
response exhibits a long-lasting oscillation with a very slow decay rate of

√
T/t (see Figure 14 in

Section 5.1).
The displacement response to a prescribed traction �̃0(t) is expressed as a convolution integral

ũ(t)= c

h

∫ t

0
J0

(
�
c(t−�)

h

)
�̃0(�)d� (15)
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2.1.2. Equation of dynamic stiffness coefficient. An equation of the dynamic stiffness coefficient is
derived from the wave equation and the definition of the dynamic stiffness coefficient. Eliminating
the force amplitude R̃ from Equations (7) and (9) leads to

h
dŨ

dx
=−SŨ (16)

Differentiating Equation (16) with respect to x and multiplying the result by h yield

h2
d2Ũ

dx2
=−Sh

dŨ

dx
−h

dS

dx
Ũ =

(
S2−h

dS

dx

)
Ũ (17)

Substituting Equation (17) into Equation (4) multiplied by h2 results, for an arbitrary Ũ , in

S2− dS

dx
+a20−�2=0 (18)

As both a0 (Equation (5)) and the eigenvalue � are independent of x , the dynamic stiffness
coefficient is a function of a0 only, i.e. dS/dx=0. Equation (18) is, therefore, rewritten as

(S(a0))
2+a20−�2=0 (19)

Its positive solution is given in Equation (10).

2.2. Circular cavity embedded in full-plane

The scalar wave propagation in a full-plane with a circular cavity of radius r0 (Figure 2) is
addressed. A surface traction �0(t) is applied on the boundary �. Applying the method of separation
of variables to the scalar wave equation in polar coordinates r , � leads to a series of wave equations
in the radial direction

r2
d2ũ

dr2
+r

dũ

dr
−�2ũ=

(r
c

)2 ¨̃u (20)

where ũ= ũ(r, t) is the modal displacement, � is the modal eigenvalue. The modal traction is
denoted as �̃0(t) at r =r0. In the frequency domain (Ũ =Ũ (�,r) is the displacement amplitude),
Equation (20) is expressed as a Bessel equation of order �

r2
d2Ũ

dr2
+r

dŨ

dr
+
((�r

c

)2−�2
)
Ũ =0 (21)

u0 u τzr

r0

r
Γ

Figure 2. Circular cavity embedded in full-plane.
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2.2.1. Analytical solution. The solution of Equation (21) satisfying the radiation condition is the
second-kind Hankel function of order �

Ũ =CH (2)
� (a) (22)

with the dimensionless variable

a=a(�,r)= �r

c
(23)

and the integration constant C . The force amplitude R̃= R̃(�,r) on a circle of radius r is
expressed as

R̃=−r
dŨ

dr
(24)

Substituting Equation (22) into Equation (24) results in

R̃=−Cr
dH (2)

� (a)

dr
(25)

The dynamic stiffness coefficient S= S(�,r) relating the force amplitude to the displacement
amplitude on a circle of radius r is defined as

R̃= SŨ (26)

It is obtained from Equations (26), (25) and (22) and expressed as

S(a)=− a

H (2)
� (a)

dH (2)
� (a)

da
=�− H (2)

�−1(a)

H (2)
� (a)

(27)

Note that the only independent variable is the dimensionless variable a. The dynamic stiffness
coefficient on the boundary � of the circular cavity is determined by evaluating S(a) at r =r0.

2.2.2. Equation of dynamic stiffness coefficient. To derive an equation of the dynamic stiffness
coefficient S= S(�,r), the force amplitude R̃ is eliminated from Equations (24) and (26). This
leads to

r
dŨ

dr
=−SŨ (28)

Differentiating Equation (28) and multiplying the resulting expression by r result in

r2
d2Ũ

dr2
+r

dŨ

dr
=−Sr

dŨ

dr
−r

dS

dr
Ũ =

(
S2−r

dS

dr

)
Ũ (29)

Substituting Equation (29) into Equation (21) and then eliminating Ũ lead to an equation of the
dynamic stiffness coefficient

S2−r
dS

dr
+
(�r

c

)2−�2=0 (30)
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Changing the independent variable from r to the dimensionless variable a (Equation (23)) yields

(S(a))2−a
dS(a)

da
+a2−�2=0 (31)

The number of independent variables is now reduced from two (� and r ) to one (a). To construct
an open boundary, it is sufficient to consider the dynamic stiffness coefficient on the boundary �.
Equation (31) is thus expressed at r =r0 as

(S(a0))
2−a0

dS(a0)

da0
+a20−�2=0 (32)

with the dimensionless frequency

a0= �r0
c

(33)

2.3. Comparison between dynamic stiffness coefficients of semi-infinite layer and circular cavity

The dynamic stiffness coefficients of the semi-infinite layer and the circular cavity are normalized
with the eigenvalue � to examine their interrelationship. Equation (19) is thus rewritten as(

S(a0)

�

)2

+
(a0

�

)2−1=0 (34)

and Equation (32) as(
S(a0)

�

)2

− 1

�

(a0
�

) d

d(a0/�)

(
S(a0)

�

)
+
(a0

�

)2−1=0 (35)

Equation (35) can be regarded as an ordinary differential equation of S(a0)/� with the independent
variable a0/�. The contribution of its second term decreases as � increases. At the limit of
�→∞, the ordinary differential equation in Equation (35) degenerates to the algebraic equation
in Equation (34). Therefore, the dynamic stiffness coefficient of a mode of the circular cavity
tends to that of a mode of the semi-infinite layer with the same eigenvalue � (Equation (11)). This
is illustrated in Figure 3 by comparing the normalized dynamic stiffness coefficient S(a0)/� of
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Figure 3. Comparison of dynamic stiffness coefficients of semi-infinite layer and circular cavity.
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the cylindrical cavity (Equation (27) with a=a0 on boundary) for modes �=20, 200 and 2000
with the dynamic stiffness coefficient of the semi-infinite layer (Equation (11)). As � increases,
the dynamic stiffness coefficient of the cylindrical cavity approaches that of the semi-infinite layer
(a0=�h/c). At �=2000, the two dynamic stiffness coefficients become nearly indistinguishable.

3. DOUBLY ASYMPTOTIC CONTINUED FRACTION SOLUTION FOR DYNAMIC
STIFFNESS

A continued fraction solution of the dynamic stiffness coefficient is obtained recursively in
Reference [40] as a singly asymptotic solution at the high-frequency limit (�→+∞). It is shown
for the circular cavity problem that the solution converges rapidly to the exact solution when the
order of continued fraction increases and the dimensionless frequency is larger than the modal
eigenvalue �. At lower frequency range, the error increases significantly and the convergence is
much slower. As it will be demonstrated in Section 5.1, the high-frequency continued fraction
solution does not converge at all for the semi-infinite layer problem when the frequency is below
the cut-off frequency.

A doubly asymptotic continued fraction solution is developed to improve the behavior of the
singly asymptotic solution. After the high-frequency continued fraction solution is determined as
in Reference [40], the differential equation of the residual term is solved again as a continued
fraction, but the constants are determined at the low-frequency limit (�→0).

Equation (19) for the semi-infinite layer is an algebraic equation, and Equation (32) for the
circular cavity is an ordinary differential equation. They are addressed in Sections 3.1 and 3.2,
respectively.

3.1. Semi-infinite layer with constant depth

3.1.1. High-frequency continued fraction. The construction of the high-frequency continued frac-
tion solution for Equation (19) follows the procedure in Reference [40]. In this particular case, an
order MH continued fraction solution is expressed as

S(a0)=(ia0)C∞− �2

(ia0)Y
(1)
1 − �2

(ia0)Y
(2)
1 − �2

· · ·− �2

(ia0)Y
(MH)
1 − �2

Y (MH+1)(a0)

(36)

where the constants C∞ and Y (i)
1 (i=1,2, . . . ,MH) are determined by satisfying Equation (19) at

the high-frequency limit a0→+∞. The negative sign in front of each term is selected intentionally
so that the open boundary can be easily expressed with symmetric coefficient matrices (see
Section (4)). Equation (36) is equivalent to

S(a0) = (ia0)C∞−�2(Y (1)(a0))
−1 (37a)

Y (i)(a0) = (ia0)Y
(i)
1 −�2(Y (i+1)(a0))

−1 (i=1,2, . . . ,MH) (37b)
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where Y (1)(a0) is of the order (ia0)−1 as a0→+∞. When a singly asymptotic solution is consid-
ered, the residual term �2(Y (MH+1)(a0))−1 is neglected.

Substituting Equation (37a) into Equation (19) results in an equation in terms of a power series
of (ia0)

(ia0)
2(C2∞−1)+�2(−1−2(ia0)C∞(Y (1)(a0))

−1+�2(Y (1)(a0))
−2)=0 (38)

This equation is satisfied by setting, in descending order, the two terms to zero. The first term is
an equation for damping coefficient C∞. To satisfy the radiation condition, the positive solution
is chosen

C∞ =1 (39)

The second term of Equation (38) is an equation of Y (1)(a0) as C∞ is known (Equation (39)). To
derive a recursive formula for determining the constants of the continued fraction, it is rewritten
as the i=1 case of

�2−2b(i)
1 (ia0)Y

(i)(a0)−(Y (i)(a0))
2=0 (40)

with the constant

b(1)
1 =1 (41)

Substituting Equation (37b) into Equation (40) leads to an equation in terms of a power series
of (ia0)

−(ia0)
2((Y (i)

1 )2+2b(i)
1 Y (i)

1 )+�2(1+2(ia0)(Y
(i)
1 +b(i)

1 )(Y (i+1)(a0))
−1−�2(Y (i+1)(a0))

−2)=0

(42)

Again, this equation is satisfied by setting the two terms to zero. The non-zero solution of the
(ia0)2 term is equal to

Y (i)
1 =−2b(i)

1 (43)

By using the solution of Y (i)
1 in Equation (43), the second term of Equation (42) is rearranged as

�2+2b(i)
1 (ia0)Y

(i+1)(a0)−(Y (i+1)(a0))
2=0 (44)

Introducing the recursive formula for updating the constant

b(i+1)
1 =−b(i)

1 (45)

Equation (44) is simply the (i+1) case of Equation (40). From Equations (41) and (45),

b(i)
1 =(−1)i+1 (46)

applies. Y (i)
1 is obtained explicitly from Equation (43) as

Y (i)
1 =(−1)i2 (47)
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The high-frequency continued fraction solution in Equation (36) (or Equation (37)) is constructed
from the solutions of the constants C∞ in Equation (39) and Y (i)

1 in Equation (47). For example,
Equation (36) is expressed for the order MH=2 high-frequency continued fraction as

S(a0)=(ia0)− �2

−2(ia0)− �2

2(ia0)− �2

Y (3)(a0)

(48)

3.1.2. Link with other open boundaries for plane waves. The singly asymptotic continued fraction
solution in Equation (36) is expressed by using Equations (39) and (47) as

S(a0)

(ia0)
=1− (�/(ia0))2

−2− (�/(ia0))2

2− (�/(ia0))2

−2−·· ·

=1+ (�/(ia0))2

2+ (�/(ia0))2

2+ (�/(ia0))2

2+·· ·

=1− (�/a0)2

2− (�/a0)2

2− (�/a0)2

2−·· ·

(49)

Several open boundaries have been constructed based on the continued fractions of the func-
tion

√
1+x , where x may represent the wave number, pseudo-differential operator or the angle

of incidence of a plane wave depending on the particular formulation. For example, the third
approximation expressed in Equation (1.13) of Reference [42] is based on the continued fraction

√
1+x=1+ x

2+ x

2

(50)

When x=(�/ia0)2=−(�/a0)2 is assumed, Equation (50) is equivalent to the second-order singly
asymptotic continued fraction in Equation (49).

It has been shown in Reference [30] that, when all the angles of ideal transmission are selected
as 0, the multi-directional open boundary proposed by Higdon [43] corresponds to the continued

fraction of cos �=
√
1−sin2 � (Equation (15), [30])

cos �=1− sin2 �

2− sin2 �

2− sin2 �

2−·· ·

(51)

where � is the angle of incidence (the angle between the direction of propagation of a plane wave
and the outward normal of the boundary). Equation (51) is equivalent to Equation (50) for the
same order of continued fraction when x=−sin2 � is assumed. By comparing Equation (49) with
Equation (51), it can be identified that the two equations are identical when setting

sin �=�/a0 (52)

Equation (52) relates the dimensionless frequency a0 to the angle of incidence �.
As sin � is bounded between 0 and 1, the performance of open boundaries based on this continued

fraction is controlled for a0��, i.e. above the cut-off frequency, only. Their accuracy below the
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Figure 4. High-frequency continued fraction solution for dynamic stiffness
coefficient of semi-infinite layer.

cut-off frequency (a0<�), i.e. for the evanescent waves, is not guaranteed. This is illustrated in
Figure 4 by comparing the continued fraction solution with the exact solution (Equation (10)).
The dynamic stiffness coefficient and the dimensionless frequency are normalized as expressed
in Equation (11). When the frequency is slightly above the cut-off frequency (a0/�>1.25), the
order MH=2 continued fraction solution is already very accurate. However, the error below the
cut-off frequency is very large. The imaginary part exhibits a discontinuous point. The real part
of the continued fraction solution is always equal to zero independent of the order as expected
from Equation (48). As the order of the continued fraction increases to MH=5 and MH=11,
the accuracy of the results at frequencies immediately above the cut-off frequency improves. The
result of MH=11 is indistinguishable from the exact solution above the cut-off frequency. Below
the cut-off frequency, the number of discontinuous points in the imaginary part increases and the
accuracy does not improve. The error at the low-frequency range affects the accuracy of late-time
response in the time domain as illustrated numerically in Section 5.1.

A reflection coefficient based on the angle of incidence of propagating plane waves is often
derived in the literature to evaluate the performance of an open boundary. It is meaningful for
only 0�sin ��1, i.e. the frequency range a0��. As the order increases, the reflection coefficient
becomes smaller but the accuracy below the cut-off frequency does not necessarily improve. This
is consistent with the statement in Reference [34] that: ‘a comparison of boundary conditions
based solely on the magnitude of reflection coefficients for propagating modes is a poor predictor
of actual performance, particularly as the order is increased’.

3.1.3. Doubly asymptotic continued fraction. The procedure in Section 3.1.1 leads to not only a
high-frequency continued fraction solution for the dynamic stiffness coefficient but also an equation
of the residual term Y (MH+1)(a0), i.e. the i=MH+1 case of Equation (40) with the constant
b(MH+1)
1 given in Equation (46). To determine a solution that is valid over the whole frequency

range, a low-frequency continued fraction solution for the residual term Y (MH+1)(a0) is sought.
Denoting the residual term as

YL(a0)=Y (MH+1)(a0) (53)
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the i=MH+1 case of Equation (40) is expressed as

�2−2bL(ia0)YL(a0)−(YL(a0))
2=0 (54)

with the constant

bL=b(MH+1)
1 =(−1)MH (55)

given in Equation (46). The continued fraction solution for YL(a0) at the low-frequency limit is
written as

YL(a0)=Y (0)
L0 +(ia0)Y

(0)
L1 − (ia0)2

Y (1)
L0 − (ia0)2

Y (2)
L0 − (ia0)2

· · ·− (ia0)2

Y (ML)
L0

(56)

It is equivalent to

YL(a0) = Y (0)
L0 +(ia0)Y

(0)
L1 −(ia0)

2(Y (1)
L (a0))

−1 (57a)

Y (i)
L (a0) = Y (i)

L0 −(ia0)
2(Y (i+1)

L (a0))
−1 (i=1,2, . . . ,ML) (57b)

where the constant term in Equation (57b) is omitted as its solution is equal to zero. For an ML order
continued fraction, the residual (ia0)2/Y

(i+1)
L (a0) is neglected. The constants Y

(i)
L0 (i=1,2, . . . ,ML)

and Y (0)
L1 are determined by satisfying Equation (54) at the low-frequency limit (a0→0).

Substituting Equation (57a) into Equation (54) leads to an equation in terms of a power series
of (ia0)

(�2−(Y (0)
L0 )2)−(ia0)(2bLY

(0)
L0 +2Y (0)

L0 Y
(0)
L1 )+(ia0)

2(−2bLY
(0)
L1 −(Y (0)

L1 )2

+2(Y (0)
L0 +(ia0)(Y

(0)
L1 +bL))(Y (1)

L (a0))
−1−(ia0)

2(Y (1)
L (a0))

−2)=0 (58)

As the low-frequency solution is being sought, Equation (58) is satisfied by setting the coefficients
of the power series to zero in ascending order. Setting the constant term to zero results in

�2−(Y (0)
L0 )2=0 (59)

Out of the two solutions, the one leading to the correct static stiffness S(a0=0)=� should be
chosen. Inspecting Equation (36) with Y (MH+1)(a0=0)=YL(a0=0)=Y (0)

L0 (Equations (53) and
(57a)), the solution is

Y (0)
L0 =(−1)MH+1� (60)

Setting the coefficient of the (ia0) term in Equation (58) to zero leads to an equation for Y (0)
L1 .

Using Equation (55), its solution is expressed as

Y (0)
L1 =−bL=(−1)MH+1 (61)
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Setting the coefficient of the (ia0)2 term in Equation (58) to zero yields an equation of Y (1)
L (a0).

After substituting the solutions for Y (0)
L0 (Equation (60)) and Y (0)

L1 (Equation (61)), the equation is
expressed as the i=1 case of the following equation:

(ia0)
2−2b(i)

L Y (i)
L (a0)−(Y (i)

L (a0))
2=0 (62)

with the constant (Equation (55))

b(1)
L =−bL�=(−1)MH+1� (63)

A recursive procedure for determining the constants Y (i)
L0 in Equation (57b) is established by

substituting Equation (57b) into Equation (62). The resulting expression is arranged as

−(2b(i)
L Y (i)

L0 +(Y (i)
L0 )2)+(ia0)

2(1+2(b(i)
L +Y (i)

L0 )(Y (i+1)
L (a0))

−1−(ia0)
2(Y (i+1)

L (a0))
−2)=0 (64)

Setting the term independent of (ia0) to zero yields an equation for Y (i)
L0 . Its non-zero solution is

Y (i)
L0 =−2b(i)

L (65)

Setting the (ia0)2 term to zero and using Equation (65) result in the equation of Y (i+1)
L (a0)

(ia0)
2+2b(i)

L Y (i+1)
L (a0)−(Y (i+1)

L (a0))
2=0 (66)

It is simply the (i+1) case of Equation (62) with the constant

b(i+1)
L =−b(i)

L (67)

Equations (63) and (67) lead to

b(i)
L =(−1)MH+i�, i=1,2, . . . ,ML (68)

The constants of the continued fraction are expressed explicitly as

Y (i)
L0 =(−1)MH+i+12�, i=1,2, . . . ,ML (69)

As an example, the order ML=2 low-frequency continued fraction for the residual Y (3)(a0) of
the order MH=2 high-frequency continued fraction solution is expressed as

Y (3)(a0)=YL(a0)=−�−(ia0)− (ia0)2

2�− (ia0)2

−2�

(70)

The doubly asymptotic continued fraction solution is constructed by combining the high-
frequency continued fraction solution in Equation (36) (or Equation (37)) with the low-frequency
solution in Equation (56) (or Equation (57)) using Y (MH+1)(a0)=YL(a0) (Equation (53)). For
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Figure 5. Doubly asymptotic continued fraction solution for dynamic stiffness coefficient
of semi-finite layer: MH=ML=2.

example, the order MH=ML=2 doubly asymptotic continued fraction solution is obtained from
Equations (48) and (70) as

S(a0)=(ia0)− �2

−2(ia0)− �2

2(ia0)− �2

−�−(ia0)− (ia0)2

2�− (ia0)2

−2�

(71)

The real and imaginary parts of the order MH=ML=2 doubly asymptotic solution are compared
with the exact solution in Figure 5. The present result is very accurate outside of a small range
around the cut-off frequency.

Further evaluation of the accuracy of the doubly asymptotic solution is reported in Section 5.1.

3.2. Circular cavity embedded in full-plane

3.2.1. High-frequency continued fraction. Like the continued fraction solution in Equation (37)
for the semi-infinite layer, the high-frequency continued fraction is expressed as

S(a0) = K∞+(ia0)C∞−(Y (1)(a0))
−1 (72a)

Y (i)(a0) = Y (i)
0 +(ia0)Y

(i)
1 −(Y (i+1)(a0))

−1 (i=1,2, . . . ,MH) (72b)

where C∞ is the damping coefficient, K∞ the spring coefficient and (Y (1)(a0))−1 the residual
term. Substituting Equation (72a) into Equation (31) yields an equation in terms of a power series
of (ia0)

(ia0)
2(C2∞−1)+(ia0)(2C∞K∞−C∞)+(K 2∞−�2

−2((ia0)C∞+K∞)(Y (1)(a0))
−1+(Y (1)(a0))

−2−a0(Y
(1)(a0))

−2Y (1)(a0),a0 )=0 (73)
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This equation is satisfied by setting each term to zero in descending order of (ia0). The (ia0)2 term
leads to an equation of C∞. Its positive solution (satisfying the radiation condition) is equal to

C∞ =1 (74)

The (ia0) term leads to an equation of K∞. By using Equation (74), its solution is expressed as

K∞ =0.5 (75)

The remaining term is an equation of Y (1)(a0) representing the residual

K 2∞−�2−2((ia0)C∞+K∞)(Y (1)(a0))
−1+(Y (1)(a0))

−2−a0(Y
(1)(a0))

−2Y (1)(a0),a0 =0 (76)

Equation (76) is simplified by multiplying it with (Y (1)(a0))2 and using the solutions of C∞
(Equation (74)) and K∞ (Equation (75)). To construct a recursive procedure, the resulting equation
is expressed as the i=1 case of

a(i)−2(b(i)
0 +(ia0))Y

(i)(a0)+c(i)(Y (i)(a0))
2−a0(Y

(i)(a0)),a0 =0 (77)

with the coefficients defined as

a(1) = 1 (78a)

b(1)
0 = 0.5 (78b)

c(1) = 0.25−�2 (78c)

A recursive equation for determining the remaining constants in the continued fraction solution
is obtained by substituting Equation (72b) into Equation (77)

(ia0)
2(−2Y (i)

1 +c(i)(Y (i)
1 )2)+(ia0)(−2Y (i)

0 −2b(i)
0 Y (i)

1 +2c(i)Y (i)
0 Y (i)

1 −Y (i)
1 )

+(a(i)−2b(i)
0 Y (i)

0 +c(i)(Y (i)
0 )2+(−2c(i)(Y (i)

0 +(ia0)Y
(i)
1 )+2((ia0)+b(i)

0 ))(Y (i+1)(a0))
−1

+c(i)(Y (i+1)(a0))
−2−(Y (i+1)(a0))

−2a0(Y
(i+1)(a0)),a0 )=0 (79)

This series equation in terms of (ia0) is satisfied by setting the individual terms to zero in descending
order of (ia0). The (ia0)2 term leads to an equation of Y (i)

1 . Its non-zero solution is equal to

Y (i)
1 =2/c(i) (80)

Setting the (ia0) term in Equation (79) to zero yields an equation of Y (i)
0 . By using Equation (80),

its solution is obtained as

Y (i)
0 =(2b(i)

0 +1)/c(i) (81)

The remaining term is written as

a(i)+Y (i)
0 −2(c(i)Y (i)

0 −b(i)
0 +(ia0)(c

(i)Y (i)
1 −1))(Y (i+1)(a0))

−1

+c(i)(Y (i+1)(a0))
−2−(Y (i+1)(a0))

−2a0(Y
(i+1)(a0)),a0 =0 (82)
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Using Equations (80) and (81), Equation (82) is rewritten as an equation of Y (i+1)(a0)

c(i)−2(b(i)
0 +1+(ia0))Y

(i+1)(a0)+(a(i)+Y (i)
0 )(Y (i+1)(a0))

2−a0(Y
(i+1)(a0)),a0 =0 (83)

Introducing the recursive formula for the following coefficients:

a(i+1) = c(i) (84a)

b(i+1)
0 = b(i)

0 +1 (84b)

c(i+1) = a(i)+Y (i)
0 (84c)

Equation (83) is formulated as the i+1 case of Equation (77). The constants Y (i)
1 and Y (i)

0
(i=1,2, . . . ,MH) of the singly asymptotic continued fraction solution are thus determined recur-
sively. By combining Equations (78b) and (84b), the constant b(i)

0 can be expressed explicitly as

b(i)
0 = i−0.5 (85)

For later use, the following identity is derived from Equations (84), (81) and (78)

(b(i+1)
0 )2−a(i+1)c(i+1) =(b(i)

0 +1)2−c(i)a(i)−c(i)Y (i)
0 =(b(i)

0 )2−a(i)c(i) =�2 (86)

As an example, the constants of the order MH=2 continued fraction solution are evaluated

Y (1)
0 = 8

1−4�2
, Y (1)

1 = 8

1−4�2
(87a)

Y (2)
0 = 4−16�2

9−4�2
, Y (2)

1 = 2−8�2

9−4�2
(87b)

Together with the constants C∞ and K∞ given in Equations (74) and (75), the single-asymptotic
solution is obtained after neglecting (Y (3)(a0))−1. The normalized dynamic stiffness coefficient
S(a0)/� of mode �=20 is plotted as a function of the dimensionless frequency a0/� in Figure 6.
Although it is highly accurate at high frequencies (a0/�>1.25), the error increases as the frequency
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Figure 6. High-frequency continued fraction solution for dynamic stiffness
coefficient of circular cavity (�=20).
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becomes lower. Below the frequency a0/�<1, very large error exists. Unlike the case of the semi-
infinite layer, the singly asymptotic solution converges to the exact solution over the whole range
of frequency. As shown in Figure 6, an accurate result is obtained at the order MH=9. The rate
of convergence close to a0=0 is much slower than that at the high-frequency range. As it will be
demonstrated in Section 5.2, the rate of convergence deteriorates as the modal eigenvalue increases.

3.2.2. Doubly asymptotic continued fraction. Y (MH+1)(a0) represents the residual of the order
MH high-frequency continued fraction. It satisfies Equation (83) with i=MH and the coefficients
in Equation (84). To facilitate the derivation of the low-frequency continued fraction solution,
Equation (83) is rewritten as

aL−2(bL0+(ia0))YL(a0)+cL(YL(a0))
2−a0(YL(a0)),a0 =0 (88)

where the function is

YL(a0)=Y (MH+1)(a0) (89)

and the constants are

aL = a(MH+1) (90a)

bL0 = b(MH+1)
0 =MH+0.5 (90b)

cL = c(MH+1) (90c)

The continued fraction solution at low frequencies is expressed as

YL(a0) = Y (0)
L0 +(ia0)Y

(0)
L1 −(ia0)

2(Y (1)
L (a0))

−1 (91a)

Y (i)
L (a0) = Y (i)

L0 +(ia0)Y
(i)
L1 −(ia0)

2(Y (i+1)
L (a0))

−1 (i=1,2, . . . ,ML) (91b)

Substituting Equation (91a) into Equation (88) yields an equation in terms of a power series of (ia0)

(aL−2bL0Y
(0)
L0 +cL(Y (0)

L0 )2)+(ia0)(−2Y (0)
L0 −2bL0Y

(0)
L1 +2cLY

(0)
L0 Y

(0)
L1 −Y (0)

L1 )

+(ia0)
2(−2Y (0)

L1 +cL(Y (0)
L1 )2+(2(bL0+(ia0))−2cL(Y

(0)
L0 +(ia0)Y

(0)
L1 ))(Y (1)

L (a0))
−1

+2(Y (1)
L (a0))

−1+(ia0)
2cL(Y (1)

L (a0))
−2−(Y (1)

L (a0))
−2a0(Y

(1)
L (a0)),a0 )=0 (92)

It is satisfied by setting the terms to zero in ascending order of (ia0). The constant term yields

aL−2bL0Y
(0)
L0 +cL(Y (0)

L0 )2=0 (93)

By using Equations (86) and (90), the determinant of this quadratic algebraic equation is equal to

(2bL0)
2−4aLcL=4�2 (94)

The solution for Y (0)
L0 is expressed as

Y (0)
L0 =(bL0+�)/cL=(MH+0.5+�)/cL (95)
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Setting the (ia0) term of Equation (92) to zero leads to an equation of Y (0)
L1 . By using Equation (95),

its solution is equal to

Y (0)
L1 =2Y (0)

L0 /(2�−1) (96)

Setting the remaining term of Equation (92) to zero results in an equation of Y (1)
L (a0). It is denoted

as the i=1 case of

(ia0)
2a(i)

L −2(b(i)
L0+b(i)

L1(ia0))Y
(i)
L (a0)+c(i)

L (Y (i)
L (a0))

2−a0(Y
(i)
L (a0)),a0 =0 (97)

where the following constants are defined and simplified using Equations (95) and (96) as:

a(1)
L = cL (98a)

b(1)
L0 = −1−bL0+cLY

(0)
L0 =−1+� (98b)

b(1)
L1 = −1+cLY

(0)
L1 =2(MH+1)/(2�−1) (98c)

c(1)
L = −2Y (0)

L1 +cL(Y (0)
L1 )2 (98d)

Substituting Equation (91b) into Equation (97) results in an equation in terms of a power series
of (ia)

(−2b(i)
L0Y

(i)
L0 +c(i)

L (Y (i)
L0 )2)+(ia0)(−2(b(i)

L1Y
(i)
L0 +b(i)

L0Y
(i)
L1 )+2c(i)

L Y (i)
L0 Y

(i)
L1 −Y (i)

L1 )

+(ia0)
2(a(i)

L −2b(i)
L1Y

(i)
L1 +c(i)

L (Y (i)
L1 )2−2(−1−b(i)

L0+c(i)
L Y (i)

L0 +(ia0)

×(−b(i)
L1+c(i)

L Y (i)
L1 ))(Y (i+1)

L (a0))
−1+(ia0)

2c(i)
L (Y (i+1)

L (a0))
−2

−(Y (i+1)
L (a0))

−2a0(Y
(i+1)
L (a0)),a0 )=0 (99)

Setting the individual terms to zero in ascending order of (ia0) leads to the equations of Y (i)
L0 , Y

(i)
L1

and Y (i+1)
L (a0), respectively. The constant term independent of (ia0) yields an equation of Y (i)

L0 .
Its non-zero solution is equal to

Y (i)
L0 =2b(i)

L0/c
(i)
L (100)

The (ia0) term is an equation for Y (i)
L1 . By using Equation (100), its solution is expressed as

Y (i)
L1 =2b(i)

L1Y
(i)
L0 /(−1+2b(i)

L0) (101)

The last term of Equation (99) results in an equation of Y (i+1)
L (a0)

(ia0)
2c(i)

L −2(−1−b(i)
L0+c(i)

L Y (i)
L0 +(ia0)(−b(i)

L1+c(i)
L Y (i)

L1 ))Y (i+1)
L (a0)

+(a(i)
L −2b(i)

L1Y
(i)
L1 +c(i)

L (Y (i)
L1 )2)(Y (i+1)

L (a0))
2−a0(Y

(i+1)
L (a0)),a0 =0 (102)
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Introducing the recursive equations

a(i+1)
L = c(i)

L (103a)

b(i+1)
L0 = −1−b(i)

L0+c(i)
L Y (i)

L0 =−1+b(i)
L0 (103b)

b(i+1)
L1 = −b(i)

L1+c(i)
L Y (i)

L1 (103c)

c(i+1)
L = a(i)

L −2b(i)
L1Y

(i)
L1 +c(i)

L (Y (i)
L1 )2 (103d)

with the expression of b(i+1)
L0 simplified by using Equation (100), Equation (102) is expressed as

the (i+1) case of Equation (97). With the combination of Equations (98b) and (103b), the constant
b(i)
L0 is expressed as

b(i)
L0 =−i+� (104)

The doubly asymptotic solution can now be determined by combining the high-frequency
continued fraction solution in Equation (72) with the low-frequency continued fraction solution
in Equation (91) using Y (MH+1)(a0)=YL(a0) (Equation (88)). As an example, the low-frequency
continued fraction is determined for the residual term of the MH=2 high-frequency continued
fraction. The result of order ML=2 is

Y (0)
L0 = 18−8�2

8�3−20�2−2�+5
, Y (0)

L1 = −4(4�2−9)

(2�−1)2(4�2−8�−5)
(105a)

Y (1)
L0 = (�−1)(2�−1)3(4�2−8�−5)

2(8�3−28�2−18�+63)
, Y (1)

L1 = 6(�−1)(2�−5)(2�−1)2(2�+1)

(2�−3)2(4�2−8�−21)
(105b)

Y (2)
L0 = −8(�−2)(2�−7)(2�−3)3

(2�−1)3(8�3−52�2+62�+45)
, Y (2)

L1 = −96(�−2)(2�−7)(2�−3)2

(2�−5)2(2�−1)3(4�2−16�−9)
(105c)

The result of the order MH=ML=2 doubly asymptotic solution for the mode �=20 is plotted in
Figure 7. Compared with the order MH=5 singly asymptotic solution, which has the same number
of terms, the doubly asymptotic solution is much more accurate.

4. IMPLEMENTATION OF CONTINUED FRACTION SOLUTION IN THE TIME DOMAIN

In the frequency domain, the open boundary condition is expressed as the force–displacement
relationship (Equations (9) and (26))

R̃= S(a0)Ũ (106)

When the dynamic stiffness coefficient S(a0) is expressed as a continued fraction solution, the
force–displacement relationship can be formulated in the time domain as a system of first-order
ordinary differential equations with time-independent coefficient matrices, which represents a
temporally local open boundary.
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Figure 7. Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient of circular cavity (�=20).

A doubly asymptotic continued fraction solution, which includes the expressions for the semi-
infinite layer and circular cavity as special cases, is considered

S(a0) = K∞+(ia0)C∞−m2(Y (1)(a0))
−1 (107a)

Y (i)(a0) = Y (i)
0 +(ia0)Y

(i)
1 −m2(Y (i+1)(a0))

−1 (i=1,2, . . . ,MH) (107b)

YL(a0) = Y (MH+1)(a0) (107c)

YL(a0) = YL0+(ia0)YL1−(ia0)
2(Y (1)

L (a0))
−1 (107d)

Y (i)
L (a0) = Y (i)

L0 +(ia0)Y
(i)
L1 −(ia0)

2(Y (i+1)
L (a0))

−1 (i=1,2, . . . ,ML) (107e)

with the dimensionless frequency

a0= �r0
c

(108)

For the semi-infinite layer (Equations (37) and (57)), K∞ =Y (i)
0 =Y (i)

L1 =0 and m=� applies. The
characteristic length r0 in Equation (108) is replaced with the depth h. For the circular cavity
(Equations (72) and (91)), m=1 applies. Substituting Equation (107a) into the force–displacement
relationship in Equation (106) leads to

R̃= S(a0)Ũ =K∞Ũ+(ia0)C∞Ũ−mŨ (1) (109)

where the auxiliary variable Ũ (1) is defined as

Ũ (1) =m(Y (1)(a0))
−1Ũ (110)

and then reformulated as

mŨ =Y (1)(a0)Ũ
(1) (111)

which is in the same form as the force–displacement relationship (Equation (106)). Similarly, an
auxiliary variable is introduced for each term of continued fraction in Equation (107b)

mŨ (i) =Y (i+1)(a0)Ũ
(i+1) (i=0,1,2, . . . ,MH) (112)
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where Equation (111) is included as the i=0 case with Ũ (0) =Ũ . Multiplying Equation (107b)
by Ũ (i) and using the definition of auxiliary variables in Equation (112) formulated at i and i−1
result in

mŨ (i−1) =Y (i)
0 Ũ (i)+(ia0)Y

(i)
1 Ũ (i)−mŨ (i+1) (i=1,2, . . . ,MH) (113)

The residual Ũ (MH+1) of an order MH high-frequency continued fraction solution is expressed in
Equation (112) at i=MH as

mŨ (MH) =Y (MH+1)(a0)Ũ
(MH+1) (114)

Y (MH+1) =YL(a0) (Equation (107c)) is expressed in Equation (107d) as a low-frequency continued
fraction solution. Multiplying Equation (107d) by Ũ (MH+1) and using Equations (107c) and (114)
lead to

mŨ (MH) =YL0Ũ
(MH+1)+(ia0)YL1Ũ

(MH+1)−(ia0)Ũ
(1)
L (115)

where the auxiliary variable Ũ (1)
L is defined in

(ia0)Ũ
(MH+1) =Y (1)

L (a0)Ũ
(1)
L (116)

Again, an auxiliary variable is introduced for each term of the continued fraction in Equation
(107e) as

(ia0)Ũ
(i)
L =Y (i+1)

L (a0)Ũ
(i+1)
L (i=0,1,2, . . . ,ML) (117)

with Ũ (0)
L =Ũ (MH+1). Multiplying Equation (107e) by Ũ (i)

L and using Equation (117) at i−1 and
i yield

(ia0)Ũ
(i−1)
L =Y (i)

L0 Ũ
(i)
L +(ia0)Y

(i)
L1 Ũ

(i)
L −(ia0)Ũ

(i+1)
L (i=1,2, . . . ,ML) (118)

For the order ML low-frequency solution, the approximation Ũ (ML+1)
L =0 is introduced.

Equations (109), (113), (115) and (118) are all combined to form a matrix equation

([Kh]+ i�[Ch]){Z}={F} (119)

with

{Z} = [Ũ ,Ũ (1), . . . ,Ũ (MH),Ũ (MH+1),Ũ (1)
L , . . . ,Ũ (ML)

L ]T (120a)

{F} = [R̃,0, . . . ,0,0,0, . . . ,0]T (120b)
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[Kh] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∞ −m

−m Y (1)
0

. . .

. . .
. . . −m

−m Y (MH)
0 −m

−m YL0 0

0 Y (1)
L0

. . .

. . .
. . . 0

0 Y (ML)
L0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(120c)

[Ch] = r0
c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C∞ 0

0 Y (1)
1

. . .

. . .
. . . 0

0 Y (MH)
1 0

0 YL1 −1

−1 Y (1)
L1

. . .

. . .
. . . −1

−1 Y (ML)
L1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(120d)

The function {Z} includes the displacement amplitude on the boundary and all the auxiliary
variables, and the only non-zero entry at the right-hand side {F} is the excitation force R̃ on
the boundary. Note that Equation (108) is substituted into the equation to replace ia0 with i�.
The time-independent matrices [Kh] and [Ch] are tri-diagonal and symmetric. Equation (119) is
expressed in the time domain as

[Kh]{z(t)}+[Ch]{ż(t)}={ f (t)} (121)

It represents a temporally local high-order open boundary applicable to one mode of wave propa-
gation in a semi-infinite layer with a constant depth or a circular cavity in a full-plane.

This paper is limited to develop and evaluate the high-order open boundary for one mode
of wave propagation. The implementation of such an open boundary in the finite element
method has been well documented, for example, in References [29, 44] and will not be repeated
herein.
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5. NUMERICAL EXAMPLES

The accuracy of the proposed doubly asymptotic open boundaries is evaluated in this section.
Newmark’s method with �=0.5 and 	=0.25 (average acceleration scheme) is employed for the
time integration. The size of the time step is chosen as �t=0.01h/(�c) for the semi-infinite layer
and �t=0.01r0/(�c) for the circular cavity.

When the present doubly asymptotic open boundary is employed, the only two parameters for
the users to select are the orders of high- and low-frequency continued fractions MH and ML.
In this paper, the same value is chosen for both parameters. With this simple, although not
necessarily optimal, choice, the doubly asymptotic open boundaries perform much better than the
singly asymptotic open boundaries with the same number of terms do.

The excitation by a unit impulse of traction �̃0I (t)=�(t) is chosen to evaluate the accuracy of
open boundaries as it covers the whole frequency range. When a unit impulse is applied, the initial
condition is obtained by integrating Equation (121) with the matrix [Ch] given in Equation (120d).
(Note that the first entry of { f (t)} and {z(t)} is �̃0I (t) and ũ(t), respectively.)

ũ(t=0)=c/(r0C∞) (122)

In the case of semi-infinite layer, r0 in Equation (122) is replaced with the depth h of the layer.
To investigate the performance of the open boundary at a specified frequency range, the surface

traction is prescribed as a Ricker wavelet. The time history of the Ricker wavelet is given as

�̃0(t)= AR

(
1−2

(
t− ts
t0

)2
)
exp

(
−
(
t− ts
t0

)2
)

(123)

where ts is the time when the wavelet reaches its maximum, 2/t0 is the dominant angular frequency
of the wavelet and AR is the amplitude. The Fourier transform of the wavelet is expressed as

R̃0(�)=0.5
√

�ARt0(�t0)
2e−0.25(�t0)2 (124)

A Ricker wavelet with the parameters t̄s =cts/h=1, t̄0=ct0/h=0.2 and AR=10 is shown in
Figure 8(a). The amplitude of its Fourier transform is plotted in Figure 8(b). The dominant
dimensionless frequency of this wavelet is a0=10.
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Figure 8. Prescribed traction as a Ricker wavelet: (a) time history and (b) Fourier transform.
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5.1. Semi-infinite layer with constant depth

The case of a semi-infinite layer with a constant depth is a stringent test due to the existence
of a cut-off frequency. Since the dynamic stiffness is not smooth at the cut-off frequency, this
case is especially challenging for the doubly asymptotic continued fraction solution. At the cut-off
frequency, the dynamic stiffness is equal to zero. As a result, waves around the cut-off frequency
decay at a very slow rate (Equation (14)). This requires that an open boundary has to be accu-
rate over a large time duration. The investigation of the semi-infinite layer is also significant
because the construction of several higher-order open boundaries is related to this case as shown
in Section 3.1.2.

The performance of the singly asymptotic open boundary based solely on the high-frequency
continued fraction solution is evaluated at first. The dynamic stiffness coefficient of the order
MH=5 continued fraction is plotted in Figure 4. The cut-off frequency exists at a0/�=1. The
large error of the dynamic stiffness coefficient below the cut-off frequency (a0/�<1) indicates
that the high-order singly asymptotic open boundary is unable to transmit evanescent waves. This
is confirmed by the unit-impulse response of the MH=5 open boundary plotted in Figure 9. The
early-time (high-frequency) response is very accurate. The response after the dimensionless time
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Figure 9. Unit-impulse response of semi-infinite layer by singly asymptotic boundary: MH=5.
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Figure 10. Unit-impulse response of semi-infinite layer by singly asymptotic
boundary: (a) MH=11 and (b) MH=99.
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Figure 11. Unit-impulse response of semi-infinite layer by doubly asymptotic boundary: MH=ML=2.

�t̄>10 suddenly exhibits a very large error and the amplitude of the error does not decay with
time. Since this phenomenon is very similar to fictitious reflections caused by enforcing a simple
(free or fixed) boundary condition at a certain distance, it is referred to as ‘fictitious reflections’
in this paper.

The effect of the order of the singly asymptotic open boundary on its accuracy is also investigated
by considering the orders MH=11 and MH=99. The order MH=11 continued fraction solution
has 12 terms (double the number of terms of the MH=5 solution). The order MH=99 solution
has 100 terms. The dynamic stiffness coefficients of both open boundaries are indistinguishable
from the exact solution above the cut-off frequency as shown in Figure 4 for the MH=11 solution
(the dynamic stiffness coefficient of the MH=99 open boundary is not plotted). The unit-impulse
responses of both open boundaries are shown in Figure 10. As the order increases, the accuracy
improves. However, significant ‘fictitious reflections’ still occur, albeit at later time, even at order
MH=99. As the amplitude of the ‘fictitious reflections’ does not decay with time, the singly
asymptotic open boundary is unsuitable for the analysis of long-time response.

The defect of the singly asymptotic open boundary in representing low-frequency responses can
be mended by employing the doubly asymptotic continued fraction solution in Section 3.1.3. The
corresponding higher-order doubly asymptotic open boundary is constructed in Section 4. For the
MH=ML=2 doubly asymptotic open boundary, whose dynamic stiffness coefficient is shown in
Figure 5, the unit-impulse response is plotted in Figure 11. It decays gradually and no ‘fictitious
reflection’ appears. It is observed by comparing Figure 11 with Figure 9 that the MH=ML=2
open boundary is much more accurate than the MH=5 open boundary after �t̄>10, although the
number of equations of both formulations is equal to 5.

The accuracy of the doubly asymptotic open boundary improves rapidly as its order increases.
This is demonstrated by using the order MH=ML=5 open boundary. Its dynamic stiffness
coefficient is plotted in Figure 12. It is indistinguishable from the exact solution except for the
slight difference close to the cut-off frequency. The unit-impulse response is shown in Figure 13.
Good agreement with the exact solution is observed for about the first 10 periods. Compared with
the unit-impulse response of the MH=11 open boundary, which has the same number of variables,
in Figure 10(a), the doubly asymptotic open boundary is significantly more accurate at late time.
No ‘fictitious reflection’ occurs.
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Figure 12. Doubly asymptotic continued fraction solution for dynamic stiffness
coefficient of semi-infinite layer: MH=ML=5.
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Figure 13. Unit-impulse response of semi-infinite layer by doubly asymptotic boundary: MH=ML=5.

To further investigate the convergence of the doubly asymptotic open boundary, a long-time
analysis, with a duration of �tc/h=200�, of the unit-impulse response is performed. As the period
of the asymptotic solution of the unit-impulse response is �tc/h=2�, this duration corresponds
to 100 periods of vibration. The amplitude of the unit-impulse response decays from 1 at t=0
to about 0.032. The result of the MH=ML=24 open boundary is plotted in Figure 14(a). The
unit-impulse response decays gradually and no ‘fictitious reflections’ occur. The numerical result
is indistinguishable from the exact solution at the early stage (Figure 14(b)) and in the middle of
the duration (Figure 14(c)). At the end of the duration, the error is merely about 0.0015. Thus, the
MH=ML=24 open boundary is sufficiently accurate for most engineering applications.
The response to a surface traction prescribed as the Ricker wavelet shown in Figure 8 (t̄s =cts/

h=1, t̄0=ct0/h=0.2) is computed for three modes �=5, 10 and 15. It is similar to the analysis
of the semi-infinite layer by using modal superposition. The same amplitude of surface traction
AR=10 is assumed for all the three modes. The ratios between the dominate dimensionless
frequencies to the modal eigenvalues are a0/�=2, 1 and 2

3 , respectively. The responses of the
MH=ML=24 doubly asymptotic open boundary are plotted in Figure 15. Very good agreement is
observed for all the three modes. For comparison, the responses of the MH=99 singly asymptotic
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Figure 14. Unit-impulse response of semi-infinite layer by doubly asymptotic boundary: MH=ML=24.

open boundary are also shown. As its dynamic stiffness coefficient is very accurate above the
cut-off frequency (a0>�), the response for the mode �=5 (the ratio a0/�=2) is very accurate
(Figure 15(a)) with only a small error after t̄>45. As the mode increases, the ‘fictitious reflections’
appear. For the mode �=15 (the ratio a0/�=0.5), the amplitude of the ‘fictitious reflections’ is
very large. In addition, the ‘fictitious reflections’ arrive earlier as the modal eigenvalue increases.

5.2. Circular cavity embedded in full-plane

As shown in Reference [40], the high-frequency continued fraction solution for the dynamic
stiffness coefficient converges to the exact solution for a circular cavity. As the modal eigenvalue
increases, the rate of convergence decreases. This is consistent with the observation in References
[29, 45] that the accuracy of high-order open boundaries deteriorates as the modal eigen-
value increases.

It has been shown in Section 5.1 for the semi-infinite layer case that the doubly asymptotic
high-order open boundary can effectively eliminate the ‘fictitious reflections’ occurring in the
singly asymptotic open boundary. As illustrated in Section 2.3, the dynamic stiffness coefficient
of a mode of the circular cavity approaches that of the semi-infinite layer as the modal eigenvalue
increases. It is thus expected that the same advantage of the high-order doubly asymptotic open
boundary exists when a mode of circular wave with a large eigenvalue is analyzed.

The mode �=200 is, for example, addressed. The dynamic stiffness coefficient of the
MH=ML=5 open boundary is shown in Figure 16. Excellent agreement with the exact solution
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Figure 15. Response of semi-infinite layer to traction varying as Ricker wavelets by MH=ML=24 doubly
asymptotic boundary: (a) �=5; (b) �=10; and (c) �=15.
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Figure 16. Dynamic stiffness coefficient of circular cavity (�=200).

is obtained. The singly asymptotic continued fraction solution with the same number of terms
(MH=11) leads to a significant error below the cut-off frequency. Only when the order is higher
than 32, the singly asymptotic solution is accurate over the whole frequency range. The same is
also observed for the unit-impulse response plotted in Figure 17.
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Figure 17. Unit-impulse response of circular cavity (�=200).
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Figure 18. Dynamic stiffness coefficient of circular cavity (�=2000).

The dynamic stiffness coefficient of the mode �=2000 is plotted in Figure 18. As expected, the
accuracy of the singly asymptotic solution deteriorates when the modal eigenvalue increases. The
result of the order MH=32 high-frequency continued fraction solution shows strong oscillation
below the cut-off frequency. In contrast, the result of the order MH=ML=5 doubly asymptotic
continued fraction solution is still very close to the exact solution. Only slight difference is
observed close to the cut-off frequency. Higher accuracy of doubly asymptotic open boundary is
also observed in the unit-impulse response as shown in Figure 19. No ‘fictitious reflections’ occur.

The response to a surface traction prescribed as the Ricker wavelet is evaluated. The parameters
in Equation (123) are chosen as t̄s =cts/h=0.01 and t̄0=ct0/h=0.002. The dominant dimension-
less frequency is equal to a0=1000, which corresponds to the period of T =0.002�. The results
of open boundaries for the modes �=200 and 2000 are compared with the exact solutions in
Figure 20. For the mode �=200, the ratio of dominant dimensionless frequency a0 to the eigenvalue
�=200 is equal to a0/�=5. As shown in Figure 18, both the MH=32 singly asymptotic solution
and the MH=ML=5 doubly asymptotic solution are highly accurate around this frequency. The
responses of both open boundaries agree very well with the exact solution as shown in Figure 20(a).
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Figure 19. Unit-impulse response of circular cavity (�=2000).
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Figure 20. Response of circular cavity to traction varying as Ricker wavelets: (a) �=200 and (b) �=2000.

For the mode �=2000, the ratio of dominant dimensionless frequency a0 to the eigenvalue
�=2000 becomes a0/�=0.5. The MH=32 singly asymptotic solution for the dynamic stiffness
coefficient shows strong oscillation around the exact solution (Figure 18). This leads to the ‘ficti-
tious reflections’ in the transient response in Figure 20(b). Reasonably accurate response is obtained
by using the MH=ML=5 doubly asymptotic open boundary.

In a real finite element analysis, the number of modes (eigenvalues) is often not easy to control.
An open boundary should perform well for all modes, including those with very high eigenvalues,
at the frequency range of interest. The above example demonstrates that a robust open boundary
should ideally perform well for the case of semi-infinite layer with a constant depth.

6. CONCLUSIONS

A novel approach for constructing high-order doubly asymptotic open boundaries of arbitrary order
has been proposed. The derivation and implementation are presented for the transient analysis of
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scalar waves in a semi-finite layer with a constant depth and a circular cavity in a full-plane. It is
found from theoretical formulations and numerical experiments that

1. When a high-order open boundary for the semi-infinite layer with a constant depth is based
solely on a high-frequency continued fraction expansion of the dynamic stiffness, i.e. singly
asymptotic, it is equivalent to several well-established high-order open boundaries. A singly
asymptotic open boundary performs satisfactorily when the dimensionless frequency (ia0)
content of the excitation is mostly higher than the highest modal eigenvalue (�), but it is unable
to model evanescent waves caused by the part of excitation having dimensionless frequency
lower than the highest modal eigenvalue. In a time-domain analysis, the error in modeling
evanescent waves appears as numerical pollution similar to the ‘fictitious reflections’ caused
by simple boundary conditions.

2. As the modal eigenvalue � of a circular cavity increases, the dynamic stiffness of the mode
tends to that of a mode of a semi-infinite layer. Therefore, a robust open boundary for circular
waves should also be able to model evanescent waves.

3. The dynamic stiffness of a doubly asymptotic open boundary converges rapidly to the exact
solution in the frequency domain as its order increases. Evanescent waves and late-time
(low-frequency) responses are simulated accurately. The doubly asymptotic open boundary
shows significant improvement in accuracy in comparison with the singly asymptotic open
boundary with the same number of terms.

4. The high-order doubly asymptotic open boundaries are expressed as first-order ordinary
differential equations in time. The two time-independent coefficient matrices, the static stiff-
ness and damping matrices, are symmetric and tri-diagonal. Well-established time-stepping
schemes in structural dynamics are directly applicable. The amount of computer time and
storage are the same as those required by the singly asymptotic open boundary of the same
order.

Research on developing a doubly asymptotic open boundary for unbounded domains with arbitrary
geometry by extending the work in Reference [40] is in progress.
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